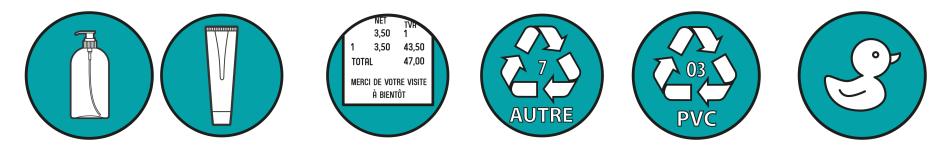
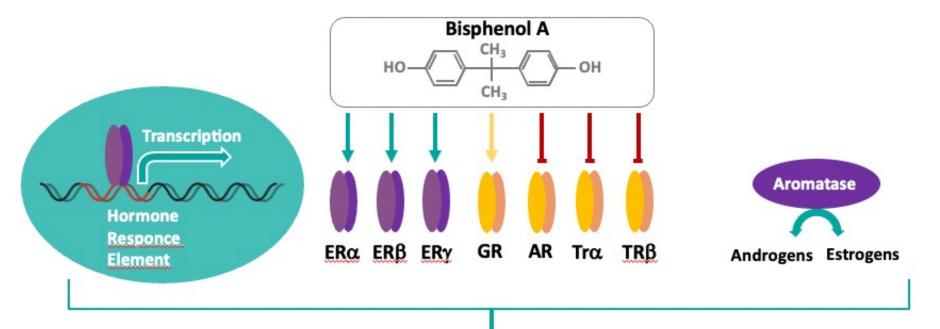
Early-life exposure to a mixture of phthalates and phenols and child neurodevelopment

V. Mustieles, M. Rolland, I. Pin, C. Thomsen, A. K. Sakhi, A. Sabaredzovic, K. Guichardet, R. Slama, **C. Philippat** INSERM U1209

Aucun conflit d'intérêt


CHILD MENTAL HEALTH, A PUBLIC HEALTH PRIORITY

- 10-20% children affected worldwide by neurodevelopmental disorders
- Early onset, often persist into adulthood
- Social and financial cost for the individual, their families and for society as a whole
- Multifactorial causes : genetic and environment (social, physical and chemical)


PHENOLS AND PHTHALATES

- Multiple uses in consumer products

- Widespread and modifiable exposure in general population
 - Detected in 70 to 100% of the urine samples tested²

PHENOLS AND PHTHALATES = ENDOCRINE DISRUPTORS

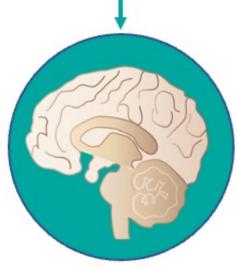
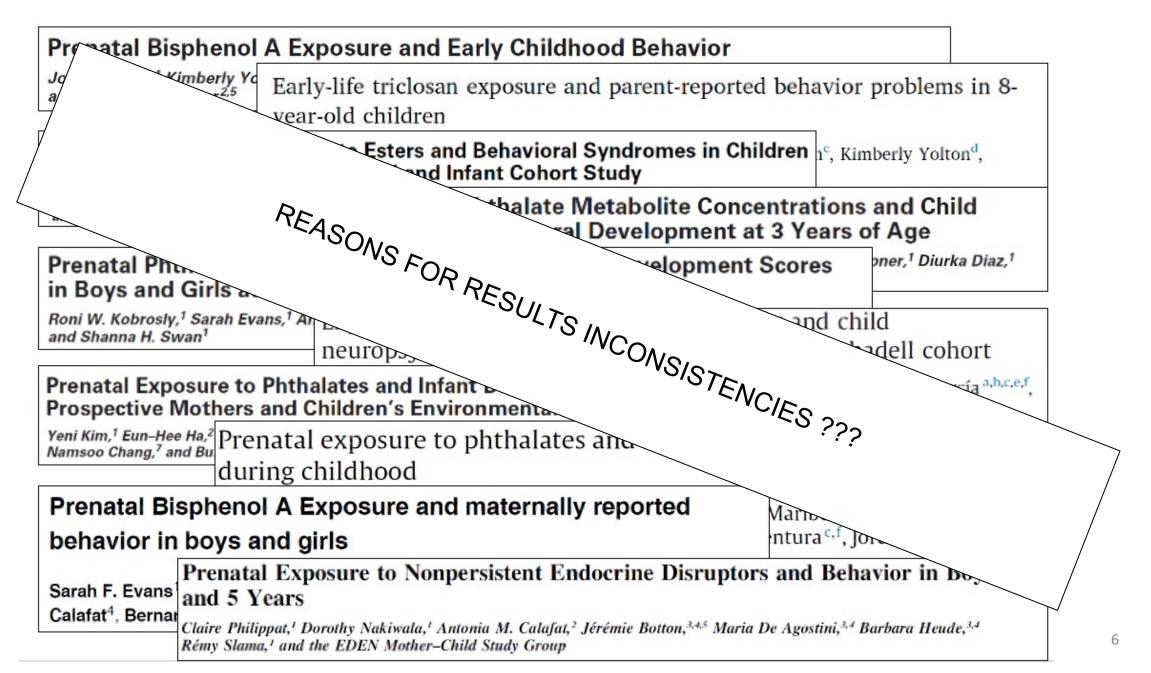
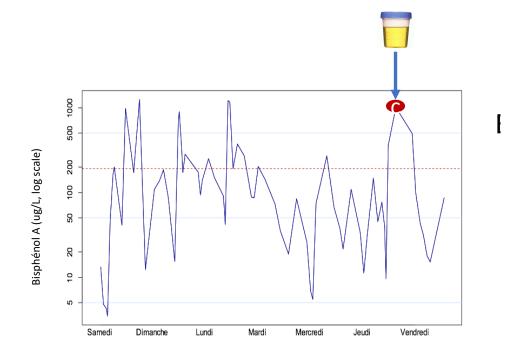
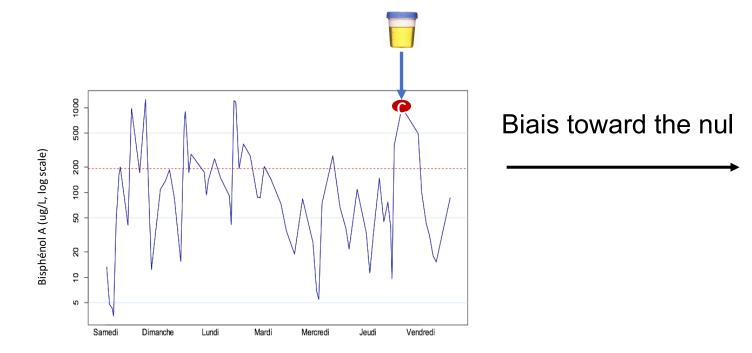



Fig. 1. Intracellular BPA mechanisms of action. BPA is known to act via a variety of hormone signalling pathways, either by agonism (green), antagonism (red) or unknown (yellow), as well as modulating expression of aromatase, a known BPA-responsive protein involved in steroid metabolism.

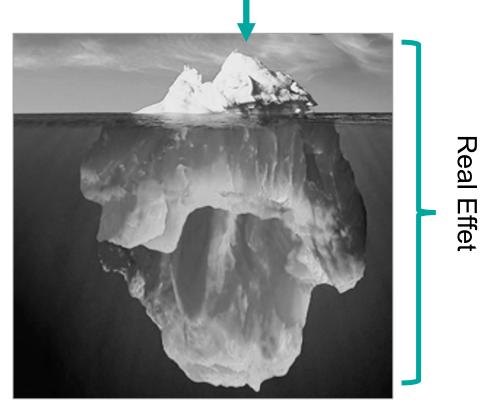

PHENOLS, PHTHALATES AND CHILD NEURODEVELOPMENT: EPIDEMIOLOGICAL STUDIES

Prenatal Bis	sphenol A Ex	posure and Early Childhood Behavior			
Joe M. Braun, ¹ K and Bruce P. Lan	phear ^{2,5} Edit	ly-life triclosan exposure and parent-reporte r-old children	ed behavior	problems in 8-	
		alate Esters and Behavioral Syndromes in Ch Maternal and Infant Cohort Study	ildren 1°, Kim	nberly Yolton ^d ,	
Yin-Ju Lien, ^{1,2*} and Shu-Li Wan Mental, Psychomotor, and Behavioral Development at 3 Years of Age					
		sures and Neurobehavioral Development) Years of Age	t Scores	oner, ¹ Diurka Diaz, ¹	
Roni W. Kobrosly and Shanna H. Sv	;1 Sarah Evans,1 Al wan1	Exposure to bisphenol A during pregnate neuropsychological development in the			
Prenatal Exposure to Phthalates and Infant Development at 6 Months: Prospective Mothers and Children's Environmental Health (MOCEH) Study					
Yeni Kim, ¹ Eun–He Namsoo Chang, ⁷ a	e Ha,² nd Bu during c	l exposure to phthalates and neuropsy childhood	chological	development	
Prenatal Bi	sphenol A E	xposure and maternally reported	Maribel Cas		
behavior in boys and girls					
Sarah F. Evans Calafat ⁴ , Berna	and 5 Years Claire Philippat,' D	Dorothy Nakiwala, ¹ Antonia M. Calafat, ² Jérémie Botton, ^{3,4,5} Maria the EDEN Mother-Child Study Group			

PHENOLS, PHTHALATES AND CHILD NEURODEVELOPMENT: EPIDEMIOLOGICAL STUDIES

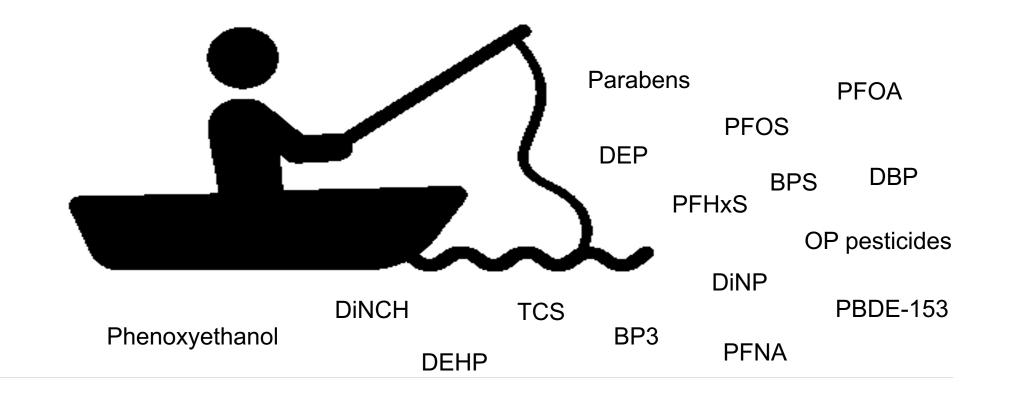


EXPOSURE MEASUREMENT ERROR



Urinary concentrations of bisphenol A measured i all the urine produced over a week - Intraclass correlation coefficient of 0.2 - *Vernet et al, EHP 2C*

EXPOSURE MEASUREMENT ERROR



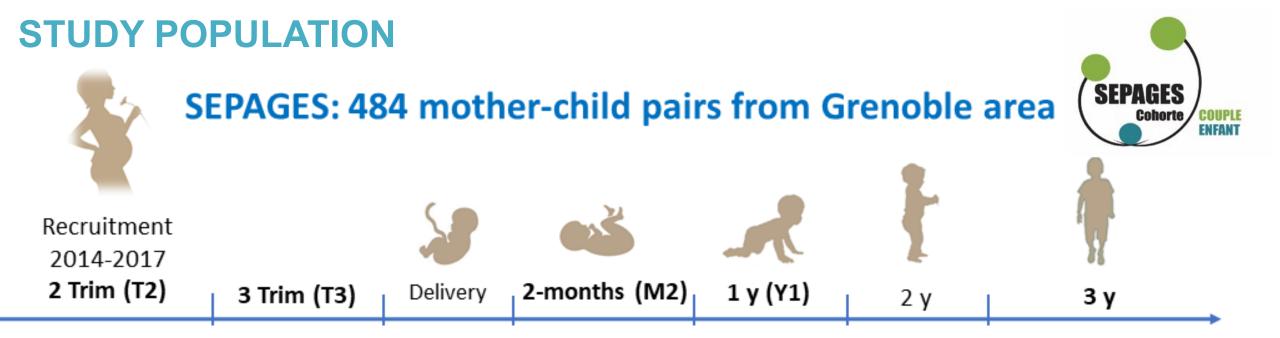
Urinary concentrations of bisphenol A measured in all the urine produced over a week - Intraclass correlation coefficient of 0.2 - *Vernet et al, EHP 2018* What epidemiologists see (20%)

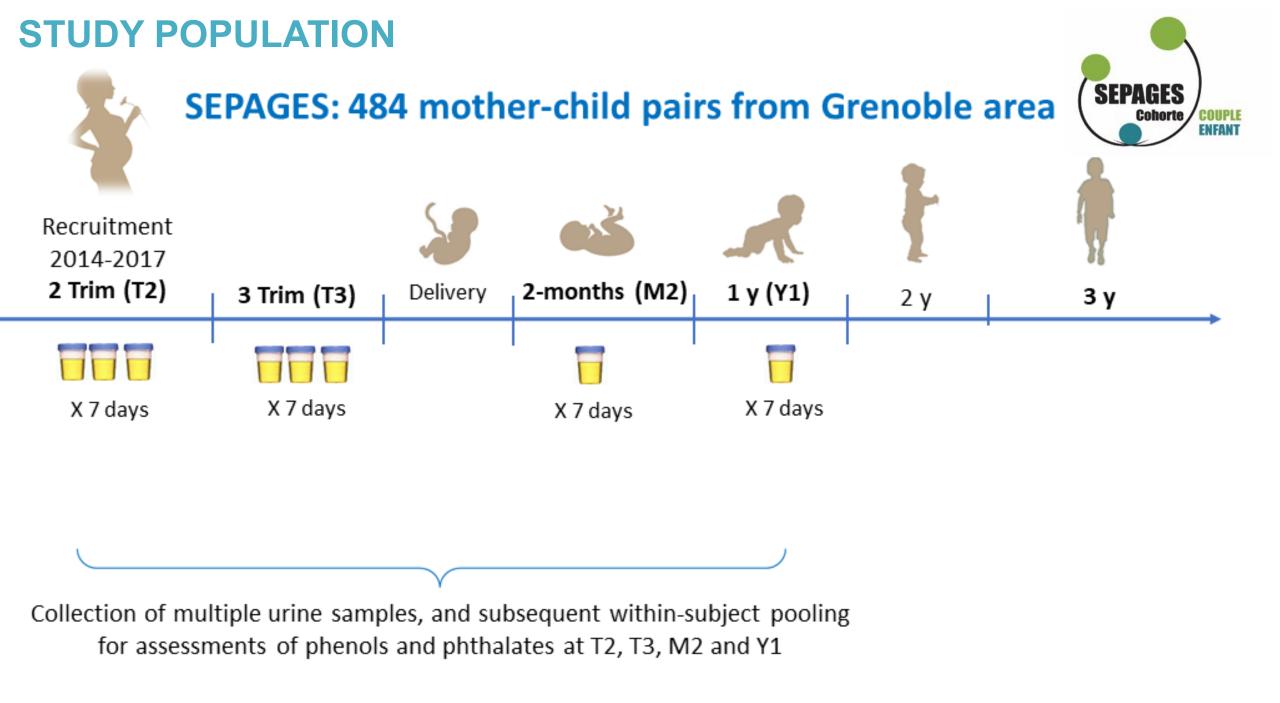
FISHING EXPEDITION

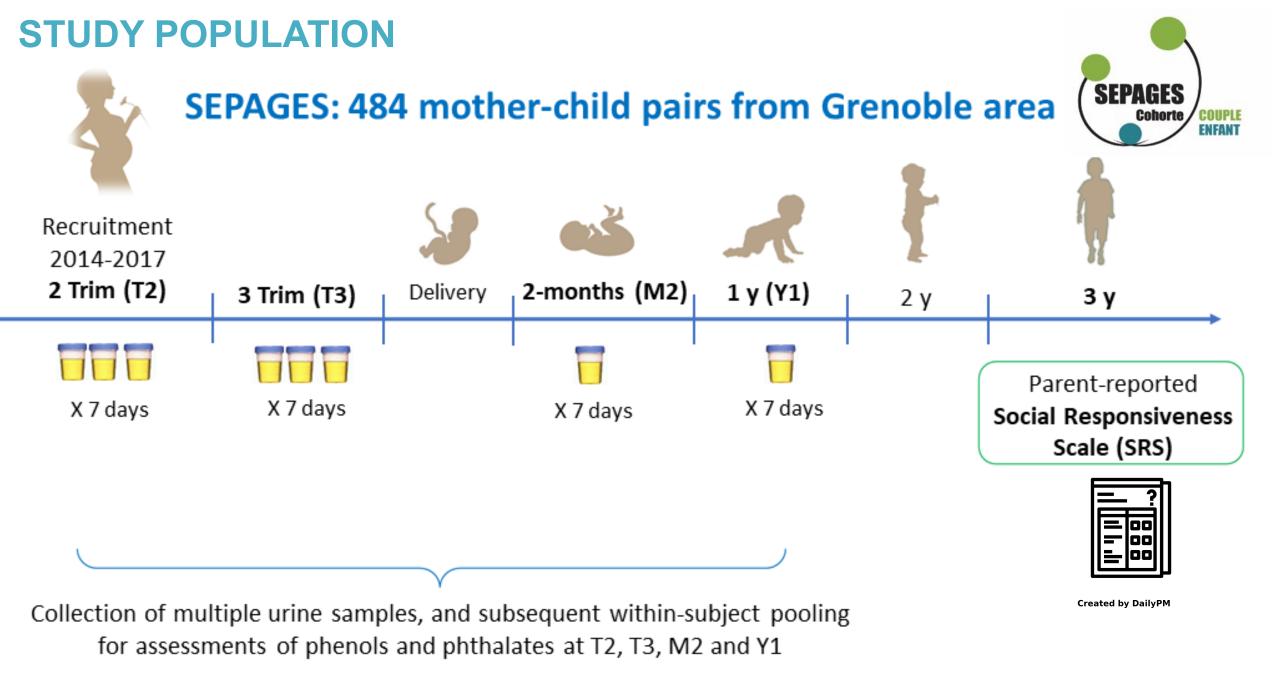
High rate of false positives even if a correction for multiple comparisons is applied (Agier et al. 2016)

To develop a new methodology based on compounds prioritization to look at the associations between early life exposure to phenols, phthalates and social behavior

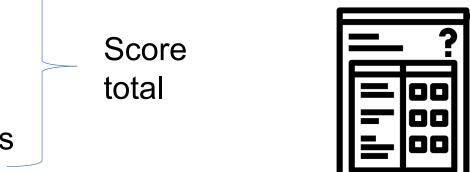
STUDY POPULATION


Т.




SEPAGES: 484 mother-child pairs from Grenoble area

Recruitment 2014-2017 **2 Trim (T2)**


Social responsiveness scale (SRS)

Evalue le comportement social de l'enfant et les traits liés aux troubles du spectre autistique

Ex: Est capable de communiquer ses sentiments / Ses expressions faciales ne concordent pas avec son discours

Corrélation forte (0,7) avec l'Entretien Diagnostique de l'Autisme Révisé (ADI-R)

Cinq sous-échelles Conscience Sociale, Cognition Sociale, Communication Sociale, Motivation Sociale Intérêts Restreints et Comportements Répétitifs

COMPOUND PRIORITIZATION

- ✓ Structured literature review
- \checkmark In vivo toxicological and epidemiological studies
- ✓ Weight of evidence (WoE) for an effect on social behavior: Limited / Moderate / Sufficient

STATISTICAL ANALYSIS: Associations with social behavior scores

Uni-pollutant models

✓ False discovery (FDR) correction -> only for compounds with limited weight of evidence

STATISTICAL ANALYSIS: Associations with social behavior scores

Uni-pollutant models

✓ False discovery (FDR) correction -> only for compounds with limited weight of evidence

Mixture model

 Bayesian Weighted Quantile Sum (BWQS) regression restricted or not to the prioritized compounds

STATISTICAL ANALYSIS: Associations with social behavior scores

Uni-pollutant models

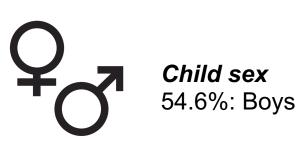
- ✓ False discovery (FDR) correction -> only for compounds with limited weight of evidence
- Mixture model
 - ✓ Bayesian Weighted Quantile Sum (BWQS) regression restricted or not to the prioritized compounds

Adjustment factors

✓ Maternal age, pre-pregnancy BMI, education, anxiety/depression, active and passive smoking, parity, mode of child daycare, family environment, breastfeeding, child age at SRS evaluation and child sex.

POPULATION CHARACTERISTICS

Maternal education 57.4%: Master degree or more


Maternal age at conception Average: 32 years

Smoking status 6.0%: Smoked at least once during pregnancy

Vitamins 93.1%: Took vitamins at least once during pregnancy

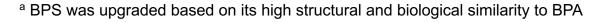
Parity 46.6%: First child

Exposure

Detection frequencies

- Phthalates: > 95% except for a few at 2 months (freq ranged between 64 and 84%)
- Phenols : > 90% for all but bisphenol AF, B, F and triclocarban detected in less than 5%

RESULTS: Literature review for compound prioritization


Of 821 publications identified, 34 *in vivo* toxicological and 37 epidemiological were tabulated, allowing to prioritize chemicals.

RESULTS: Literature review for compound prioritization

Of 821 publications identified, 34 *in vivo* toxicological and 37 epidemiological were tabulated, allowing to prioritize chemicals.

Chemical	Weight of	Type of	Correction for multiple	Included in the	
	evidence	Analysis	comparisons	mixture model	
Bisphenol A	Supportive	Confirmatory			
DEHP	Supportive	Confirmatory		Yes	
MEP	Moderate	Confirmatory			
MnBP	Moderate	Confirmatory	No		
MBzP	Moderate	Confirmatory			
Triclosan	Moderate	Confirmatory			
Bisphenol S ^a	Limited	Confirmatory			
MiBP	Limited	Exploratory			
DiNP	Limited	Exploratory		No	
DINCH	Limited	Exploratory			
ohMPHP	Limited	Exploratory	Yes		
Benzophenone-3	Limited	Exploratory			
Parabens	Limited	Exploratory			

Adjusted associations between the mixture and SRS scores

Exposure window	N	Social Responsiveness (SRS) Scale	Overall mixture ^a B (95% CI)	Mixture restricted to prioritized chemicals ^b B (95% CI)
Second trimester (T2)	406	Total	0.87 (-1.27, 3.01)	0.71 (-1.14, 2.56)
Third trimester (T3)	399	Total	1.00 (-1.00, 3.00)	0.59 (-1.17, 2.35)
Neonates (M2)	380	Total	-0.47 (-2.29, 1.36)	-0.63 (-2.15, 0.89)
Infants (Y1)	358	Total	1.16 (-0.73, 3.05)	1.38 (-0.18, 2.94)

Beta1 represents the mean change in SRS scores per quartile increase of the mixture

^a Included bisphenol A, triclosan, ∑DEHP, MEP, MnBP, MBzP, MiBP, ∑DINP, ∑DiNCH, oh-MPHP, benzophenone-3, ∑Parabens ^b included bisphenol A, triclosan, ∑DEHP, MEP, MnBP and MBzP

Adjustment factors: Maternal age, pre-pregnancy BMI, education, anxiety/depression, active and passive smoking, parity, mode of child daycare, family environment, breastfeeding, child age at SRS evaluation and child sex.

Adjusted associations between the mixture and SRS scores

Exposure window	N	Social Responsiveness (SRS) Scale	Overall mixture ^a B (95% CI)	Mixture restricted to prioritized chemicals ^b B (95% CI)
Second trimester (T2)	406	Total	0.87 (-1.27, 3.01)	0.71 (-1.14, 2.56)
Third trimester (T3)	399	Total	1.00 (-1.00, 3.00)	0.59 (-1.17, 2.35)
Neonates (M2)	380	Total	-0.47 (-2.29, 1.36)	-0.63 (-2.15, 0.89)
Infants (Y1)	358	Total	1.16 (-0.73, 3.05)	1.38 (-0.18, 2.94)
		Social Awareness	0.36 (-0.02, 0.75)	0.37 (0.04, 0.69)
		Social Cognition	-0.19 (-0.67, 0.30)	-0.07 (-0.48, 0.34)
		Social Communication	0.84 (0.14, 1.53)	0.91 (0.31, 1.50)
		Social Motivation	0.04 (-0.52, 0.59)	0.03 (-0.46, 0.52)
		Restricted Interests and Repetitive Behaviors (RRB)	0.07 (-0.35, 0.48)	0.19 (-0.17, 0.55)

Beta1 represents the mean change in SRS scores per quartile increase of the mixture

^a Included bisphenol A, triclosan, ∑DEHP, MEP, MnBP, MBzP, MiBP, ∑DINP, ∑DiNCH , oh-MPHP, benzophenone-3, ∑Parabens ^b included bisphenol A, triclosan, ∑DEHP, MEP, MnBP and MBzP

Adjustment factors: Maternal age, pre-pregnancy BMI, education, anxiety/depression, active and passive smoking, parity, mode of child daycare, family environment, breastfeeding, child age at SRS evaluation and child sex.

Discussion

Decreased bias compared to previous studies relying on spot samples

Litterature search allowed to

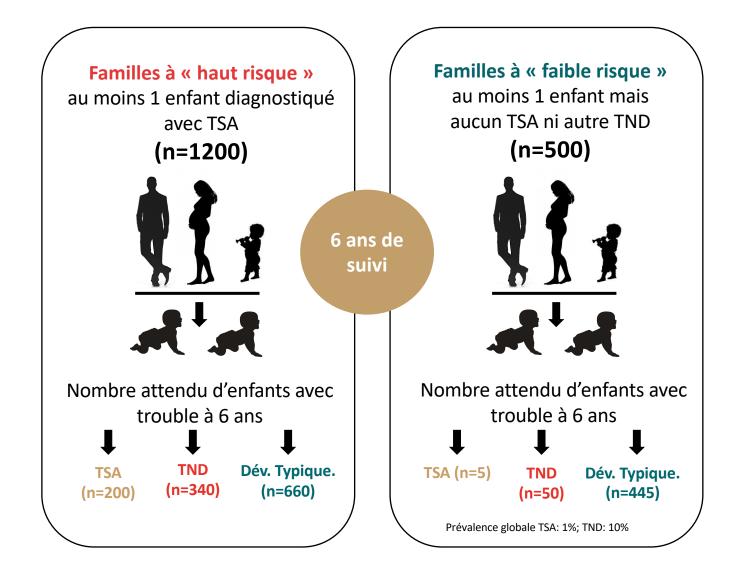
- \circ Described potential modes of action
- Provide biological plausibility for our results
- Define weight of evidence allowing compound prioritization

Discussion

Decreased bias compared to previous studies relying on spot samples

Litterature search allowed to

- \circ $\,$ Described potential modes of action $\,$
- Provide biological plausibility for our results
- Define weight of evidence allowing compound prioritization


Sensitivity windows: first study with infancy exposure o inclusion in further biomonitoring studies?

Increased exposure to the prioritized mixture = worse social behavior at 3 years

Perspectives

COHORTE MARIANNE AUX ORIGINES DU DÉVELOPPEMENT DE L'ENFANT

PI: A. Baghdadli

Acknowledgement

Co-authors

Vicente Mustieles, Matthieu Rolland, Isabelle Pin, Cathrine Thomsen, Amrit K. Sakhi, Azemira Sabaredzovic, Gina Muckle, Karine Guichardet, Rémy Slama, Claire Philippat

Fondation de France

European Research Council

